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A THREE-DIMENSIONAL ANALYSIS OF  THE  EFFECTS 

OF HEAT  GENERATION IN PLATES 

By Robert R.  McWithey 
Langley Research  Center 

SUMMARY 

A  method for determining  three-dimensional  steady-state  temperature  distributions 
is presented for plates  in which  heat is generated  and  conducted  throughout  the  plate 
material.  The  solution  for  the  temperature  distribution is given  in  terms of a power 
ser ies  with respect  to  the  plate  thickness  coordinate.  The  coefficients of the  power 
ser ies   a re  dependent upon the  temperature  distribution  over  the  plate  surfaces.  Specific 
attention is given  to  the  determination of temperature  distributions  and  plate  deforma- 
tions  resulting  from  constant  heat  generation and from  the  absorption of electromagnetic 
radiation. 

INTRODUCTION 

The  phenomenon of heat  generation  in  materials  occurs as a result of the  conver- 
sion of energy  into heat in  such  processes as electrical-current conduction,  chemical 
reactions,  and  absorption of electromagnetic  radiation.  Heat  generation  within a struc- 
tural  material  causes  nonlinear  temperature  gradients  to develop,  and may result  in 
undesirable  thermal  deformations or  high thermal  stresses. Some recent  investigations 
have  been  carried out (refs. 1 to 6) to  determine  transient  one-dimensional  temperature 
distributions  resulting  from  the  absorption of various  forms of electromagnetic  radia- 
tion.  In  these  analyses  special  attention  was  given  to the determination of the  thermal 
s t resses  and  deformations  in  plate  and  shell  configurations  resulting  from  nuclear  radia- 
tion  (refs. l to 4). Examination of the  equations  governing  plate  and shell deformations, 
however,  indicates  that  thermal  deformation is also  dependent upon the  temperature 
gradients  in  the  directions  normal  to  the  thickness  coordinate. (See refs. 3 and 7 to 10.) 
It is therefore of interest  to  determine not only the  one-dimensional (i.e., thickness  direc- 
tion)  but also  the  three-dimensional  temperature  distributions  throughout  the  structural 
material. 

The  work  presented  herein  develops a method for  determining  three-dimensional 
steady-state  temperature  distributions  caused by internal  heat  generation  in  plates.  The 
corresponding  expressions  for  the  thermal-deformation  parameters are presented  for 



plates and shells.  Specific  examples are given for heat  generation  caused  either  by 
constant  heat  generation or by absorption of electromagnetic  radiation. 

SYMBOLS 

an(x,y),bn(X,y) coefficients of power series in z 

A(x,y,z) heat  generated at any  point  within the plate per unit  time per unit  volume 

bl = z(x,y,O) az 

Bn Bernoulli  numbers 

CmDm constants 

En Euler  numbers 

f(x,y,z) = - A(x,y,z) 
k 

h plate  thickness 

I intensity of electromagnetic  radiation 

IO energy  incident on plate  surface z = h/2 

k thermal  conductivity of plate  material 

m,n  integers  in  power series 

T temperature  change  from  an  initial state 
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rectangular  coordinates 

linear  absorption  coefficient 

2) Bn 

a2  a2 a2 
ax 2 + a y 2 + , 2 2  
a2 a2 

differential  operator - 

differential  operator 

differential  operator (V2)m/2; Vo indicates no differential  operation 

2+ay2 

intended 

differential  operator (V2) ; Vo indicates  no  differential  operation n/2 

intended 

plate  temperature  parameter 

h/2 
plate  temperature  parameter 

I -h/2 Tz dz 

THEORY 

The following analysis presents a general  series  approach  for  determining  three- 
dimensional steady-state temperature  distribution  in  plates.  The  general  series  solu- 
tion is then  used,  in  specific  applications,  for  the  determination of plate  temperature  dis- 
tributions and the  corresponding  thermal-deformation  parameters. 

General Solution of the Heat-Conduction  Equation 

Steady-state  temperature  distributions  within  solid  bodies  in  which conduction is 
the  mode of heat  transfer and  which  have  isotropic  thermal  properties  are  governed 
mathematically by Poisson's equation (ref. 11): 

V12T = - A(x,y,z) 
k 
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where 

T temperature at any point 

A(x,y,z) heat  generated at any point  within  the  plate  per  unit  time  per  unit  volume 

k thermal  conductivity of plate  material  (assumed  constant) 

Solutions of Poisson's  equation  may  be found by means of the  Green's  function 
technique. (See ref. 12.) However,  application of this method of solution  to  boundary- 
value  problems is difficult  since  the  solution  involves a surface and  volume  integral  over 
the body geometry.  Another  analytical  method of approach  to  the  solution of Poisson's 
equation  may  be  formulated by expressing  both  the  temperature  and  the  right-hand  side 
of equation (1) in  terms of power series  in z. This  gives 

T = bn(x,y)zn 
n=O, 1,2,3 

and 

where  functions an(x,y) a r e  known because  f(x,y,z) is assumed  to  be known. Substi- 
tuting  equations (2) and (3) into  equation (1) and  equating  the  coefficients of like  powers 
of z gives  the  recurrence  relation 

an = V 2 bn + (n + l)(n + 2)bn+2 (4) 

With the  use of this  recurrence  relation,  the  coefficients, bn, of zn  in  equation (2) 
may  be  expressed  in  terms of bo, b l ,  and %. Equation (2) then  becomes 

T = (-1)"I' n! Vnbgzn + .n+2 5 (-@2 b 2 ! ! E v m % - m  + c ( - 1 p - W  L vn-lblzn 
(n + Z ) !  n! 

n=0,2,4 n=0,2,4  m=0,2,4  n=1,3,5 

(m-l)/Z (n - m + I)! Vm-l  
(n + Z ) !  an-m+l 

n=1,3,5  m=1,3,5 
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where bo and b l  are, respectively,  the  temperature  distribution at the  plane z = 0 
and  the  temperature  gradient  in  the  z-direction at the  plane z = 0. If the  functions bo 
and b l  are known, the  temperature  distributian  within  the body is determined by equa- 
tion (5). The  functions bo and b l  are determined  from  the  temperature  boundary 
conditions. 

Determination of Coefficients bo and bl  in  the  General Solution 

For the plate shown in figure 1, the  temperature  distribution  within  the  plate is 
largely dependent  on  the  temperature  boundary  conditions  on  the  large  surfaces (z = *h/2) 

and is relatively  unaffected  by  the  temperature 
z boundary  conditions  along  the  edges of the 

plate. Therefore,  the  edge  boundary  condi- 
tions  will not be  considered  and  the  coeffi- 
cients bo and bl  will be functions of the 
boundary  temperatures  Th12  and  T-h/2 
on the  large  surfaces of the  plate and of the 
internal  heating  function an(x,y). I Z E i I h  

In  order  to  determine bo and b l   i n  
X terms of Th/2,  T-h/2,  and +(x,y) it is 

Figure 1.- Coordinate system associated with plate. convenient  to  define two boundary-temperature 
functions To and Po in  terms of the  speci- 
fied  boundary  temperatures 

TO = (Th/2 + T-h/2) (6) 

0 - 2  - - Y Th/2 - T-h/2) (7) 

Expressing To and Po in  terms of bo, b l ,  and + by the  use of equation (5) gives 

Po = P o  + * (tT2 (-1) (m-1)/2 (n - m + 1): Vm-l  
(n + 2)! an-m+l 

n=1,3,5  m=1,3,5 

where 

To = To* + m/2 (n - m)!  m 
(n + 2)! an-m 

m=0,2,4 

To* = 
n=0,2,4 

n! . 



and 

PO* = (-1)  (n-1)/2 L On-lbl n! 
n=1,3,5 

It should be noted that  equations (8) and (9) establish  relationships  between To and  bo 
independent of bl,  and  between Po and b l  independent of bo. Expressions  for bo 
and b l  may be  obtained  in  terms of To* and Po , respectively, as outlined  in 
appendix A. These  expressions  are given by 

* 

00 

bo = 1 ?( i r V n T o *  
n=0,2,4 

where  the  constants  En are the  Euler  numbers, and  the  constants P are  related 
to  the  Bernoulli  numbers  (see eq. (A9)). 

(n- 1)/2 

Thus  the  functions bo  and b l  may be found in  terms of To, Po, and  an(x,y) 
by first determining  To*  and Po* from  equations (8 )  and (9), and  substituting  the 
resulting  expressions  into  equations (12) and  (13). When the  solutions  for  bo and b l  
a r e  substituted  into  equation (5), the  resulting  temperature  distribution  will  satisfy  the 
governing  Poisson  equation (eq. (1)) and  the  specified  temperature  boundary  conditions 
on  the  large  surfaces of the  plate. Appendix  B presents  general  expressions  for  the 
temperature  distribution  in  which  Th/2,  T-h/2, and the  coefficients an(x,y) in  the 
series expansion  for  the  heat-generation  function are limited  to  either  biharmonic func- 
tions or harmonic  functions. 

Determination of the  Plate  Thermal-Deformation  Parameters 

Equations  governing  the  thermal  deformations of plates  may  be found in  numerous 
places  in  the  literature. (See refs. 3  and 7 to 10.) The  basic  assumptions  used  in  these 
analyses  require  the  definition of two temperature  parameters which appear  in  the equi- 
librium  equations  and  boundary  conditions  governing  plate  deformation.  These  param- 
eters are given by 

h/2 
‘Po = S,/z dz 

‘p1 = J”/2 Tz dz 
h/2 
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and are proportional,  respectively, to the  average  temperature  distribution  through  the 
plate  thickness  and  the first moment of the  temperature  distribution  with  respect  to  the 
midplane of the  plate.  For  small-deflection  plate  theory  the  parameter qo appears 
only in  the  equations for midplane s t resses  and  in-plane  deformations.  Similarly,  the 
parameter q1 appears only in  the  equations  for bending s t resses  and  out-of-plane 
deformations. (See ref. 10.) 

Expressions  for  the  plate  thermal-deformation  parameters may be  obtained  in 
terms of bo and bl  by substituting  equation (5) into  equations (14) and (15) and  per- 
forming  the  indicated  integrations.  The  resulting  expressions  for qo and q1 are 
given by 

and 

‘Po = ‘Po* + 2 
m/2 (n - m)! m 

(n + 2)I an-m 

= + 2 (m- 1)/2 (n - m + 1): Vm-l  
(n + 2)! an- m+ 1 n=1,3,5  m=1,3,5 

where 

* 
n=0,2,4 

ql* = 2 
n=1,3,5 

The  functions qo and q l  may  thus  be  determined  from  equations (16) and (17) after 
obtaining expressions  for bo and b l  which are functions of the  temperature  boundary 
conditions  and the heating  function. 

From  the  expression  for  the  plate  thermal-deformation  parameter cpo, it can  be 
shown that qo is dependent only  on the  boundary  temperature  function  To  and  the 
coefficients an for  even  values of n. Similarly, it can  be  shown  that  the  plate  thermal- 
deformation  parameter q1 is dependent only on PO and  the  coefficients  an for odd 
values of n. Therefore, when the  heating  function A is represented by an  even 
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function  with  respect to the  midplane of the  plate,  the  plate  thermal-deformation  param- 
eter q1 is unaffected by heat  generation. 

APPLICATIONS 

Constant Heat Generation 

General  solution.-  For  the  case of constant  heat  generation,  the  coefficients a, 
for the  series defined by equation (3) are 

a o = - k  
A 

an = 0 

The  temperature  distribution  given by equation (5) thus  reduces  to 

n/2  vnbOzn (- 1) (n- 1)/2 
vn- 1 

2k n! 
T = (-1) + blzn - -  Az2 

n=1,3,5 
(2 1) 

n=0,2,4 
n! 

The  relationships  between  To  and bo and  between Po and  bl a r e  obtained from 
equations (8) and (9) and a r e  given by 

\ 

To = T o  - - 
* h2AI 8k 
* Po = Po I 

The  thermal-deformation  parameters  are  obtained  from  equations (16) and (17) and a re  
given by 

J 

Equations (23) indicate  that 'po is the only plate  temperature  parameter  affected by 
constant  heat  generation.  Thus,  for  small  deformations,  since A is an  even  function, 
the  constant  internal  heat  generation  affects only the  in-plane  plate  deformation.  In  addi- 
tion,  the  effect of constant  internal  heat  generation is to  change  the  value of 'po over 
the  entire  plate by a constant  amount. 

Harmonic  solution.- If, in addition  to a constant A, it is assumed  that V T 

and V T are  zero,  then a simpler  form of plate  temperature  distribution is 
obtained  from  equation (B16) of appendix B as 

2 
h/2 

2 '  
- h/2 
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T = A ( Z - z 2 ) + - + T o  2P0z 

2k 4 h 

The  corresponding  plate  thermal-deformation  parameters  are  obtained  from  equa- 
tions (B17) and (B18) and are given by n 

h"A 
12k 

qo = Toh + - 
and 

Poh2 
=7 

Absorption of Electromagnetic  Radiation 

General  solution.- An assumption  commonly  made  in  calculations  involving  the 
absorption of electromagnetic  radiation is that dI, the  incremental  amount of energy 
absorbed  in an incremental  thickness  dz, is proportional  to  both  the  intensity of the 
electromagnetic  radiation I and the  thickness  dz. (See ref. 13.) With the  use of this 
assumption,  the  heat  generated  per  unit  time  per  unit  volume is given by 

where  Io is the  energy  incident and normal  to  the  plane  surface  z = h/2  with  no losses 
due to  reflection  and p is the  linear  absorption  coefficient. 

The  heating  function A as described by equation (27) is zero  for  either p = 0, 
p - 00, or Io = 0. When equation (27) is substituted  into  equation (3), the  summation 
of the  power series  in z with  coefficients an is defined as 

c BIO(X,Y) -P(!-z) 
anzn = - e 

k 
n=O 

Expanding the  right-hand  side of equation (28) in a power series  in z  and  equating  like 
powers of z  gives  the  expression  for  an as 

I 

Substitution of equation (29) into  equation (5) gives  the  temperature  equation as 
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Vnbo Vn- ‘blzn 
T =  2 (-l)n/2-  zn + 

n!  n! 
n=0,2,4  n=1,3,5 

n+l 
e 

k 
n=0,2,4  m=0,1,2,3 

In order  to  satisfy  the  specified  temperature  boundary  conditions,  the  functions bo 
and bl  in  equation (30) must  be  determined  in  terms of To* and Po from equa- 
tions (12) and  (13). First the  functions To* and Po are found by substituting  equa- 
tion (29) into  equations (8) and  (9). After some  algebraic  manipulation, this  gives To* 
and Po* as 

* 
* 

and 

The  functions bo and b l  can  then  be found by substituting  equations (31) and (32) into 
equations (12) and  (13). 

The  plate  thermal-deformation  parameters may  be found by appropriately  inte- 
grating  equation (30) for and q1 or by substituting  equation (29) into  equations (16) 
and  (17). Either method  gives 

n+l 

.(m + 2)m! 
m=1,3,5 ‘1 
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Equations (33) and (34) are the  general  expressions  for qo and q1 in  terms of bo 
and bl. (See eqs. (18) and (19).) Appendix B  presents a solution which illustrates  the 
general  procedure  used  in  obtaining  T, qo, and ql in  terms of To, Po, and Io. 

Solution  when Th/2,  T-h/2,  and  Io are harmonic.- Two specific cases are  pre- 
- 

sented,  one  for  temperature  distributions  in  which  Th/2 and T-h/2 are prescribed, 
and  one for  temperature  distributions  in which  Th/2 is prescribed and  the  surface 
z E -h/2 is insulated. 

- _” ~ ~ ~~ ~ ~. ~ 

Temperature  distributions  in which  Th/2  and  T-h/2 are  prescribed: Appen- 
dix  B  presents  the  solutions  for  T, qo, and q1 for  the  case  in which  Th/2,  T-h/2, 
and I, are biharmonic  functions.  (See  eqs. ( ~ 1 9 )   t o  (B21).) ~f T ~ / ~ ,   T - ~ / ~ ,  and I, 
are harmonic  functions,  the  corresponding  expressions  for T, qo, and q1 may be 
obtained  from  equations (B19) to (B21) by letting 

V 2 T o = O  

V2P0 = 0 

+IO = 0 1 
The  resulting  expressions  are 

T = To + 2P0z + $1; + z) + e-”(: - z) - he -p(k -Z) ] 
Ioh2 ‘po = Toh + [ph - 2 + e-ph(ph + 24 

2Wh)  

Poh2 1,h3 
‘ p 1 = 7  + fiph)2 - 6ph + 12 - e-ph[(ph)2 + 6ph + 121> 

12k(ph)3 

(3 5) 

(37) 

Equations (37) and (38) indicate that the  plate  temperature  parameters  are  linearly 
dependent  on the temperature  distributions  over the large  surfaces of the  plate and on 
the  magnitude of the  incident  radiation. 

The  value of the  linear  absorption  coefficient p also affects the  magnitude of the 
plate  thermal-deformation  parameters  inasmuch as it governs  the  value of the  coeffi- 
cient of the  incident-radiation  term.  Figures 2(a) and 2(b) show the  effect of  ph on 
coefficients of the  incident-radiation  terms  from  equations (37) and (38). It may be  seen 
from  figure 2(a), where (qo - Toh)k/Ioh2 is plotted  against ph, that  radiation  absorp- 
tion  has  the  largest  effect on qo, and  hence on the  in-plane  small-deflection  plate 
deformations,  for a value of  ph  of approximately 2.6. It should be noted that ‘po is 
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.07 
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.02 

.01 

0 2 4 6 8 IO 

Bh 

(a) Effect of ph on 

14 16 18 20 

Figure 2.- Effect of ph on plate temperature  parameters  for specified boundary  temperatures 
and  incident  energy  distribution. 

equal  to Toh when ph is equal  to  zero.  Also, qo approaches Toh as ph 
approaches  infinity.  In  these  limiting  cases no radiation is absorbed  within  the  plate, 
and  the  temperature  gradient is constant  through  the  thickness of the  plate.  Figure 2(b) 

shows  the  quantity (ql - plotted  against ph, and  indicates  that  the  quan- 

tity ql, which determines  the  out-of-plane  small-deflection  plate  deformations, 
increases  from a value of P0h2/6 for a value of ph equal  to  zero  until ph is 7.14. 
Thereafter, q1 decreases  with  increasing ph and approaches  Poh76 as ph 
approaches  infinity. As before,  the  extreme  values of  ph are cases  in which no radia- 
tion is absorbed  within  the  plate and the  temperature  gradient is constant  through  the 
thickness of the  plate. 

Temperature  distributions  in  which  Th/2 is prescribed  and  the  surface  z = -h/2 
is insulated:  For this case  the  function  T-h/2 is eliminated  from  the  To and Po 
te rms  of equation (36) by using  the  condition 

= o  
z= -h/2 

12 

(39) 
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Figure 2.- Concluded. 
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The  resulting  expression for the'temperature  distribution is 

Because no  heat flow is allowed across the  surface z = -h/2, the  temperature  gradient 
through  the  thickness of the  plate  must  allow  heat  conduction  toward  the  surface z = h/2. 
Thus  the  maximum  temperature  in  the  thickness  direction  always  occurs at the  surface 
z = -h/2. A typical  temperature  profile, as obtained  from  equation (40), is shown  in 
figure 3 in  terms of the  dimensionless  temperature  parameter (T - Th12)k/IOh  and the 

dimensionless  thickness  parameter 2z/h.  The  magnitude of the  temperature  difference 
between  the  front  and  back  surfaces of the  plate is determined by the  parameter oh. 

Figure 4 shows  the  quantity (T-h/2 - Th/2)k/Ioh . plotted as a function of  ph 
from  equation (40). It is seen  that a maximum  temperature  difference  between  the  front 
and  back  surfaces  will  occur at a value of  ph equal  to 1.8. Thus,  appropriate  selec- 
tion of plate  material and  plate  thickness will allow temperatures at the  back  surface 
(z = -h/2) to  be  maximized  with  respect  to  the  front  surface  temperature. 

. 28 

. 24 

.20 

. 16 

. 12 

. 0 8  

.rM 

0 

- 1 . 0  - 0 . 8  - 0 . 6  - 0 . 4  - 0 . 2  0 0 . 2  0 . 4  0.6 0.8 1.0 

Figure 3.- Temperature profile through plate thickness  when %= 0 at z = and ph = 1.0. az 2 
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. 3  

.2 

(T-h/2 - Th/2) 

I o h  

. I  

0 2 4 6 8 IO 12 14 16 18 20 

Bh 

'Figure 4.- Variation of maximum  temperature  differential  through plate thickness as a  function of ph. (2 = 0 at z = - $) 

The  plate  temperature  parameters qo and q1 a re  obtained by appropriately 
integrating  equation (40). The  resulting  equations a r e  

Figure 5(a) shows  the  variation of (qo - hTh/2)k/Ioh2  with ph as obtained from equa- 
tion (41), and indicates  that  the  largest  effect of radiation  absorption on the  value of 'po 
occurs  for ph = 2. Figure 5(b) shows  the  variation of qlk/!tOh3 with ph as obtained 
from  equation (42), and  indicates  that  the  maximum  effect of radiation  absorption  on  the 
value of 'pl occurs when  the  value of ph is 1.61. 
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0 2 4 6 8 IO 18 12 14 16 

(a) Effect of ph on qt 

Figure 5.- Effect of ph on the plate  temperature  parameters  when  the  temperature distribution and incident energy 
distribution are specified on  the  surface z = h/2, and  when dT/bz = 0 at z = -h/2. 
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(b) Effect of ph on $01. 

Figure 5.- Concluded. 

CONCLUDING REMARKS 

General  expressions  for  the  steady-state  temperature  distribution  within  plates 
have  been  obtained  for  conditions  involving  heat  generation  within  the  plate.  The  solu- 
tions  presented satisfy the  temperature  boundary  conditions on the  large  surfaces of the 
plate  but do not usually  satisfy  the  temperature  boundary  conditions at the  edges of the 
plate. 

The two temperature  parameters  that  govern  plate  deformation are denoted by 'po 
and 'pl and are respectively  proportional  to  the  average  temperature  through  the  plate 
thickness and the first moment of the  temperature  distribution  in  the  thickness  direction 
with  respect  to  the  midplane of the  plate.  The  equations  indicate  that when the  internal 
heating  function is represented by an  even  function  with  respect  to  the  midplane of the 
plate,  the  parameter 'pl is unaffected by heat  generation.  The  solution  for  constant 
heat  generation is presented as an  example of this  czse. If the  internal  heating  function 
is represented by an odd function, 'po is unaffected by heat  generation. 
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When the generation of heat is induced  by the absorption of electromagnetic radia- 
tion,  the  resulting  nonlinear  temperature  distribution  through the plate  thickness  affects 
both the plate  deformation  parameters. The variation of the deformation  parameters 
with  respect  to the dimensionless  product ph ( p  is the  linear  absorption  coefficient 
and h is the plate  thickness) is of particular  interest  inasmuch as the  magnitudes of p 
and h are dependent  on the plate material and plate thickness, respectively.  For the 
case in  which the temperature  boundary  conditions  and the incident  radiation are har- 
monic  functions, it is observed that /3h has the greatest effect on the  magnitudes of PO 
and ‘pl for  values of ph between zero and  approximately 7. Therefore, if it is 
desirable to minimize the effect of internal  absorption of electromagnetic  radiation on 
thermal  deformation, it is necessary  to  select a material  and  thickness  for which  the 
magnitude of the  product ph is either  very  nearly  zero or much  greater  than 7. 

Langley Research  Center, 
National  Aeronautics and Space  Administration, 

Langley  Station, Hampton, Va., August 28, 1967, 
124-08-01-13-23. 
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APPENDIX A 

DETERMINATION OF COEFFICIENTS bo AND b l  

The temperature  distribution  within  the  plate as defined by equation (5) is dependent 
on  the unknown midplane  temperature  functions bo and bl .  Equations (10) and (11) 
relate bo  and b l  to  the known boundary temperature  functions  and  heat-generating 
function but are not  directly.  solvable for bo  and bl  unless V2bo = V2bl = 0. Expres- 
sions  for bo  and bl are found in  terms of the known functions  To*  and Po*, how- 
ever, by appropriately  reversing  the series equations  for  To*  and Po . For example, 
a set of equations  involving  To  and its derivatives  may  be  obtained  in  the following 
form: 

* 
* 

-(-rV2T0*  c2 h = 
2! 2 

-( c 4  41 -7V4T,' h 2 = 

-(-) c6 61 h 6  2 @To* = 

. .  J 

where Cn are  arbitrary  constants. If these  constants  satisfy the set  of equations 
given by 

1 
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APPENDIX A 

then  the  summation of equations (Al) is simply 

Equations (A2) are of the  form  presented  in  reference 14, series (1145), and it is 
immediately  apparent  that  equations (A2) are satisfied if 

Cn = En (A41 

where  the  constants En are  Euler  numbers  and are defined in  reference 14, pages 238 
and 239. Thus,  equation (A3) becomes 

00 

n=0,2,4 

In  determining b l  in  terms of Po, a set  of equations  may be written in  the  form 

- D l  -(-) + . . . V8bl 9 

2171 2 

> (A6) 
D 2 ( y v 4 p 0 *  41 2 = 

""(L!)%po* 61 2 = 

. .  J 

where the constants Dm are  arbitrary  constants. If these  constants  satisfy  the set of 
equations  given by 
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""=O Dl 1 

D2 D l  1 

D3  D2 D l  1 

D4  D3  D2 Dl  1 

21  31 

- - -  + - = o  
41  2131  51 

"- + - - - = o  
61 4131  2151 71 

-" +"- 
81  6133  4!51  2171 +E= 
. . . . . .  

then  the  summation of equations  (Al) is simply 

By using  series (1135) of reference 14 along  with  the  identities 

pn = ( 22n - 2)Bn for  all n 

Bn(l) = 0 for  all n 

B, (;) = 0 for odd n 

which are  listed  respectively  in  series (1130), (1136), and (1142) of reference 14, it may 
be shown that,  for odd values of n 2 3 

Equations  obtained from (A10) have  the  same  form as equations (A7). Equations (A7) 
are therefore  satisfied if 

where  the  constants 
equation (A9). Thus 

p(n- 1)/2 
equation (A8) becomes 

are related  to  the  Bernoulli  numbers as indicated by 

21 
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APPENDIX  B 

SIMPLIFICATION OF TEMPERATURE EQUATIONS 

Temperature  Distributions  in Which Th/2,  T-h/2, and 

Are  Biharmonic  Functions 

When completely  arbitrary  temperature  boundary  conditions  and  heating  function 
are introduced  into  the  general series solution  for  the  temperature  distribution (eq. (5)) 
and  into  the  series  for bo and b l  (eqs. (12) and  (13)), the  mechanics of solution 
become  unwieldy.  However, if the  boundary  temperatures Th/2,  T-h/2,  and the 
heating-function  coefficients  an(x,y) are restricted so that 

where m is some  reasonably  small,  even  integer,  then  the  solution for the temperature 
distribution is more  easily  obtainable.  For  example, if it is assumed  that Th/2, T-h/2, 
and an are biharmonic  functions  then, 

v % = o  4 033) 

Applying equations (B2) and (B3) to  equations (6) to (9), (12), and (13) gives: 

V 4 T o = O  

v 4 P0=O 

V4T0* = 0 

V4P0* = 0 037) 

v4b0 = o 
V 4 b l = 0  

Substituting  equations (B3),  (B8),  and (B9) into  the  general  equation for the  temperature 
distribution  (eq. (5)) gives 

T = b o - -  V2b0 2 
2 

z + blZ - - 
6 

r 1 

+ =n+21 2 "(n-2) 
(n + 2)(n + 1) (n + 2)(n + l)(n)(n - 1) 

n=2,3,4 J 
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where bo and bl are obtained  from  equations (12) and (13) as 

2po h  2 * * 
b l =  - 

h 12 
+-v Po 

Expressions for To* and Po a r e  obtained  from  equations (8) and (9) in   terms of To, 
Po, and  and are given by 

* 

- 7 

w h 2  
2 

To* = To - -- 2 (!!T21 an "(n-2) 
8 (n + 2)(n + 1) (n + 2)(n + 1)(n)(n - 

n=2,4,6 

alh3 
( ; ~ 2 [  

an PO* = Po - - - "(n-2) 
48 (n + 2)(n + 1) (n + 2)(n + l)(n)(n - 

n=3,5,7 

2 

The  temperature  distribution may now be  written  in  terms of To, Po, and an by 
eliminating  To  and Po from  the  expressions  for bo and b l  (eqs. (B11) and 
(B12)) and  substituting  the  resulting  expressions for bo and b l  into  equation (B10). 
This  procedure  gives  the  temperature  distribution as 

* * 

T = T o -  'n V2% 
(n + 2)(n + 1) + (n + 4)(n + 3)(n + 2)  (n + 1) 

V2% z 2  
2 (n + 2)(n + 1) 3h +-v  Po 

n=O, 2,4 

" z 2 (gy2  v2+ J + c ,n+2 an 
3h (n + 2)(n + 1) (n + 2)(n + 1) 

n=1,3,5 n=O, 1,2 

n+4 v 2an a, 
(n + 4)(n + 3)(n + 2)(n + 1) (n + 2)(n + 1) 

n=O, 1,2 

v2an 

(n + 4)(n + 3)(n + 2)  (n + 1) 
+ J 
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APPENDIX B 

Expressions for qo and q1 may be obtained by appropriately  integrating  equa- 
tion (B15) with  respect  to  z (see eqs. (14) and (15)). 

SOlUtiOnS in Which Th/2, Tmh/2,  and Are Harmonic  Functions 

If the  further  restriction is made  that  Th12,  Teh12, and an  are  harmonic func- 
tions,  then  the V2 terms  appearing  in  equations (B10) to (B15) vanish and the  tempera- 
ture  distribution  becomes 

2P0z 
T = T o + -  

h (B 16) 
n=0,2,4 n=1,3,5 (n + l)(n + 2) 

Applying these  results  to  the  plate  thermal  deformation  parameters qo and q 1  
(eqs. (14) and (15)) gives 

q0 = Toh - 2 

(n + 2)(n + 4) 
n=1,3,5 

Biharmonic Solution for  the  Case of Absorption of Electromagnetic  Radiation 

The  temperature  distributions  caused by the absorption of electromagnetic radia- 
tion a r e  obtained by substituting  the  expression  for an, given by equation (29), into 
equation (B15). This  gives 

where it should be noted that V410 must  be  zero  because of the  requirement  that V4an 
be zero  (see  eq. (29)). Appropriately  integrating  equation (B19) with respect to  z gives 

‘Po and as 
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qo = T,h + (ir 
L 

ql=-+- 'Oh2 h2 [ z l  
6 720 

h' 

J 

B 1 
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